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INTRODUCTION

Godunov and Kozin [1] investigated the structure of shock waves in a viscoelastic medium characterized
by a relaxation time T of tangential stresses and an equation of the medium of special form, The form of
the equation of state was dictated by considerations of convenience of the construction of interpolationformulas,
In the present paper restrictions on the equation of state of general form are formulated.

1, Egquation of Elastic Energy

We consider an isotropic medium with an internal energy density given by the equation
E = Ely, ks, ks S), (1.1)

where E is a symmetric function of the specific elongations k; >0 (i=1, 2, 3) along the principal axes of strain,
and S is the entropy per unit mass, We assume that (1.1) satisfies the following conditions:
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Since ﬁ is symmetric along ki, similar inequalities can be obtained from £1.2)-(1.4) by cyclic permuta-
’g\ion of the k;. As a consequence of inequalities (1.2)-(1.4) and the symmetry of E there are inequalities for
E(;, ky, kg, S) for uniform elongations in all directions, i.e., kj=k;=ky=k. These inequalities have the form

E’uv> 0, 27\"'1:S< 0, Evvv <0, k= i?/;)—/-v—‘; (1.5)

Henceforth the internal energy E will be assumed to be a function of the parameters o, 8, and y, represent-
ing the logarithms of the specific elongations along the principal axes of strain

o =1Ink, p=Ink, y=Ink, E=E, B, y, ). (1.8)
In this case inequalities (1.2)-(1.4) have the form
T =E,>0,r=(E, — Ep)/(z — B) >0; 1.7
¢ = Egy— Eq >0, 1= Eqs <<V, } (1.8)
g =Eup — Eao— Eas(Ep — Eo)/Es << 0;
q = Eqoq — 3Egq + 2B, <0, (113)Eyy + (2/3) Eqp — E, >0. 1.9)

2. Structure of Shock Waves

The differential equations describing the motion of a viscoelastic medium parallel to the x axis in (x, y,
z) space have the form [1]
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where x and t are space and time coordinates, u is the velocity of the medium along the x axis, and p=p;-
e~a-B-Y , Because of the isotropy of the medium g=y. The quantity p, is the density of the medium under
normal conditions, The principal stresses oy, Oy, and o, along the x, y, and z axes are related to the strains
by the expressions

0x = pEq, oy = pEp, 6, = 0E,.
As shown in [1], the problem of the structure of shock waves [sclutions of system (2.1) of the form o =a (x—Ut),
B8 =y=p(x—TUt), 5=8(x—Ut)] reduces tothe problem of solving the equations
Oxtpo = o — 1), B — Ey - I(pg — 021 — vg)=0, § = 2.2)
and the quadrature
dz/dp = 3wwipla — B), (2.3)

where py, pyp, Eg and uycharacterize the state of the material in front of the wave, w = pju, is the mass velocity,
and v=1/ p, The characteristic relaxation time 7 of stresses resulting from plasticdeformations depends on
the state of stress of the medium,

System (2.2) determines a curve in (o, 3, S) space which we call, as in [1], the curve of possible states.
Calculations performed in [1] for equations of state of the form

E=E(,D, 8, D=—(f+d+d),d=a—(@+b+7s3
dy=P—(a+P+7)3 dy=7—(a+p+7)3

showed that the curve of possible states is a smooth curve connecting the states (@;=p8, Sp and (@;=84, Sy)
in front of and behind the wave, respectively.

For M= |w I/poc0 >1, where ¢, is the speed of sound (1.8), the shock wave contains an elastic jump (pre-
cursor) which is determined by the subsidiary relation 8 =8, and is located in front of the plastic wave arising
on the profile as a result of the nonlinear dependence on the material parameters, Calculations showed that
the entropy S and the value of B8 on the wave increase monotonically. It will be shown below that the profile
has a similar structure for media with an equation of state (1.6)-(1.9), which means also for (1.1)-(1.4).

3. Properties of the Curve of Possible States

Let us consider the functions s=(—py)/ (vg~v), H=E—Eg+ (p+p) (v=v()/2, p=—0y, =—pEq, V=ve? +B+y,
The differentials of these functions have the form
dv = vida + dp + dy),
dp = —p%’dv + p(Eep — Eoo)dP +0(Eay — Eao)dy + pEqsdS,
ds = [(vy — V)dp + (p — Po)dV1/(v — vy)?,
dH = TdS + (Eg — Eo)dB + (Ey — Eg)dy — (112)(v — vy)ds.

We write the curve of possible states (2.2), which is given by the equation H=0, s =w?, 8 =y, in parametric
form a=a(v), 8 =8(v), S=S(v). Then the differential equations of the curve of possible states have the form

=0~ 08— 0, () = In /o

B _ 0 (M2 1), B (o) = In Y/ 5ol @.1)
B =2 (Ep — Ea) (1 — M2), S (v5) = S0,
where the Mach number M= |w|/pc. It follows from (3.1) that along the curve of possible states
dp*c*dv = p*[g + ((M* — 1)/g)(Baap — Eaca —Fop + Eaa — (Eg — EdlEaus — Eas))]- (3.2)
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Let us establish certain properties of the curve of possible states.

A, The state of the material behind and in front of the wave satisfies the following conditions 11
Ey — Ey + (py + po) (01 — 1)/2 = 0, py — py =+ — w? (vy — v,), 3.3)
@ =p=v=1n SV/W, % =Py =y, =1n g/-vo/u"

the subscripts 1 and 0 correspond to the beginning and end of the wave. Since Egs. (3.3) are the ordinary gas-
dynamic relations, conditions (1.5) are sufficient to ensure a unique solution of (3.3) vy, Sq) = (vg, Sp for given
values of vy, Sy, and w [2], This implies that the curve of possible states has two and only two points of inter-
section with the plane @ =8 in (o, B, S) space corresponding to the initial and final states of the shock wave
for a given w, :

B. We call the point Z* =(a* g*, S¥) on the curve of possible states at which M=1, i.e., |w]| =pc, the
critical point, It follows from (3.2) that at the critical point

d(p*cd)/dv = p’q < 0, dM¥dv > 0, (3.4)

i.e., the value of M?> — 1 is increasing. It follows from (3.1) that d3/dv=dS/dv =0 at M?=1; i.e., B(v) and S(v)
at the critical point cease to be monotonic functions.

C. We consider a portion of the curve of possible states for the interval v_<v<v,. If M(vy) <1, M¥(v) <
1 for the whole interval (v_, v,). If this were not the case, there would be a point v*, v_<v*=sv,, at which
M%(v*) =1, dM?(v*)/dv < 0, which would contradict (3.4).

D. Finally, the curve of possible states is a simple curve in (@, 8, S) space; i.e.,
0 < (dot/dv)? + (dB/dv)? + (dS/dv)? << 0. (3.5)
By virtue of (3.1) the violation of inequality (3.5) would contradict (1.7) and (1.8).

4., Construction of the Wave Profile

We consider first the case M;= [w ,/poco<1, i.e., the subsonic case of the propagation of a shock wave.
Let vy > vy be the values of v corresponding to the beginning and end of the shock wave, Since M2 =M?(vy) <1,
as shown in case C, M?<1 everywhere in the interval v, <v<v,. According to (3.1) and (1.8) this implies that
dg/dv >0, i.e., B(v) is a monotonically increasing function, For vy <v < v, a portion of the curve of possible
states lies on one side of the plane 8 =« in (v, B, S) space (case A). Following [1] we expand the curve of pos-
sible states in the neighborhood of the point (ay= 8, Sy). We obtain

2 .
1— 51§+3';(4)(E2:ﬁ - bga) dp
W) (V—1), S =S,

pa= 1— M2
It follows from (1.9) that %/3 (E},s=E}q)/ci? +1=al/c? >0. Since My2>ad/c}, (dB/dv), >0, it follows that f—a =

0 in the neighborhood of v< vy, which means that 8=o everywhere in the interval v;<v=v,. We conclude from
(3.1) and (1.7) that dS/dv=0 for vi=v=vy i.e., S(v) is a monotonic function. Under these conditions the quad-
rature (2.3) determines the parameter x =x(8) as a monotonic function of 8, which means x(v) is also a mono-
tonic function.

We turn to the supersonic case when M;= | w l/poco >1, As shown in [1] it is impossible to construct a
smooth solution for the shock wave in this case, The same is true also for an equation of state E(o, 8, v, S)
of general form. Following [1] we introduce an elastic jump from the initial state (0j=28,, Sy to an intermedi-
ate state (a,, 84, Sy) defined by the conditions

Ey — Eq + [(Py + Po)21 (02 — 1) — 0,) (4.1)
Py = Py — W (Vy — Ug)s Y2 ™= B2 = By }

The inequalities (1.7)-(1.9) {2] are sufficient to ensure that (4.1) has a unique solution (&,, B, S,)} and in this
case M, =|w|/pyc, would be smaller than unity.

Let us consider now the portion of the curve of possible states o (v), B(v), S(v), where v{=v=v,, Since
M; =M?(v,) >1, the statements formulated for the subsonic case are valid for this portion; i.e., M2<1 and
B (v), S(v}, and x(v) are monotonic functions everywhere in the interval v;<v=v,, This permits the continuous
extension of the solution for a shock wave beyond the elastic jump,
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5. Inequalities for an Equation of State of the Form E(v, D, A, 8)

It is of interest to reformulate the inequalities (1.7)-(1.9) for an equation of state E=E(v, D, A, S), which
is frequently used in applications [A =1/3 (d§+d§+d§)]. However, the relaxation of tangential stresses as a
result of plastic deformations, characterized by a relaxation time 7, occurs more rapidly the larger the value
of the tangential stresses, i.e., the larger the values of D and A, As a result of the essentially nonlinear
character of the dependence of T on the tangential stresses [1], in actual processes

jdil + 1d,| + ld5l < 1, D1, Al L.

Under these conditions by neglecting the terms containing d; as factors, inequalities (1.7)-(1.9) can be
written in the form

r—Ep>0, ¢ = v*Fup+ (2/3) Ep >0,
l=vE;g<<0,T=Eg>0,g=—Ep<<O, (5.1)
qg=— 2Ep -+ 2UE.,,D -+ V*E oo + (4/3) EA<O: at= 2E1m>0-

The inequalities
ED >0, E,, >0, Epg< 0, E‘DD <0, Eum<<0, Bp<<O,

which are satisfied for interpolation formulas of the equations of state E(v, D, §) given in {3], are sufficient
to ensure that (5.1) are satisfied.

The author thanks S. K. Godunov and E, I, Romenskii for their interest in the work.
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SHOCK ADIABATS OF ALKALI HALIDE CRYSTALS

V. A. Zhdanov and V. V, Polyakov UDC 539.21

Nonparametric calculation of shock adiabats makes it possible to relate shock-compression parameters
of a material directly determinable in experiment with parameters characterizing the material on an atomic
level. Establishment of such a relationship is a necessary step in preliminary calculation of shock-compres-
sion parameters, which are of great significance in planning experiments and in problems involving construc-
tion with materials having given optimum properties.

Nonparametric calculation of shock adiabats of alkali halide crystals is of interest because these crys-
tals have been studied experimentally in great detail, allowing experimental verification of calculations. At
the same time, if we consider that many inorganic materials, including sitalls, glasses, ceramics, and some
explosives, have ionic or predominantly ionic bonds, study of alkali halide crystals is necessary tobe able
to consider the behavior of these materials under shock-compression conditions,

The shock adiabat Py(V) can be calculated with the formula (1]

P (V) + v (W) {E,—U MV
T+ YN U—VoVi2

Pr(V) = (1)
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